Industrialcraft 2/сжиматель

Использование [ править | править код ]

Генерирует кинетическую энергию с помощью ротора и ветра. Мощность, вырабатываемая генератором, рассчитывается как сумма скоростей (измеряется в MCW) в рабочей области ротора кинетического генератора, умноженная на 0,1. Скорость ветра зависит от высоты, погоды и случайного фактора, меняющегося во времени, и может быть измерена с помощью ветромера. Максимальная скорость ветра достигается на высоте с 160 до 162 включительно. Дождь увеличивает скорость на 20 %, гроза на 50 %.

От ротора зависит размер рабочей области. В процессе работы ротор получает повреждения. Сам по себе он вырабатывает не электрическую энергию (EU), а кинетическую (kU). Ветряная турбина используется совместно с кинетическим генератором, поставленным вплотную.

Классификация видов генераторов энергии

Существует несколько признаком, по которым классифицируют ветроэлектрические установки.

Итак, ветряки различаются по:

  • числу лопастей в пропеллере;
  • материалам изготовления лопастей;
  • расположению оси вращения относительно поверхности земли;
  • шаговому признаку винта.

Встречаются модели с одной, двумя, тремя лопастями и многолопастные.

Изделия с большим числом лопастей начинают своё вращение даже при небольшом ветре. Обычно их используют в таких работах, когда сам процесс вращения важнее получения электроэнергии. Например, для извлечении воды из глубоких колодезных скважин.

Лопасти могут быть парусными или жесткими. Парусные изделия намного дешевле жестких, на изготовление которых идёт металл или стеклопластик. Но их приходится очень часто ремонтировать: они непрочные.

Что касается расположения оси вращения относительно земной поверхности, различают вертикальные и горизонтальные модели. И в этом случае каждая разновидность имеет свои преимущества: вертикальные более чутко реагируют на каждое дуновение ветра, зато горизонтальные мощнее.

Ветрогенераторы разделяются по шаговым признакам на модели с фиксированным и изменяемым шагом.

Изменяемый шаг позволяет существенно увеличивать скорость вращения, но такая установка отличается сложной и массивной конструкцией. ВЭУ с фиксированным шагом проще и надёжнее.

Галерея изображений

Фото из

От изрядно поврежденного автогенератора после разборки остался лишь статор, для которого был отдельно сварен корпус

Для того чтобы восстановить технические характеристики двигателя, надо перемотать 36 катушек статора. В перемотке потребуется провод диаметром 0,56 мм. Витков надо сделать по 35 штук

Перед креплением лопастей отремонтированный двигатель надо собрать, покрыть лаком или хотя бы эпоксидкой, поверхность нужно покрасить

Провода соединяются по параллельной схеме, три провода выводятся для подключения к источнику питания

Ось, предназначенная для обеспечения вращения, выполнена из отвода трубы 15. К оси приварены подшипники, которые привалены через отрезок трубы 52

В изготовлении хвоста использована оцинкованная листовая сталь толщиной 4 мм, загнутая по краям и установленная в выбранный в рейке паз

Лопасти вырезаны из полимерной канализационной трубы, прикреплены к соединяемому с двигателем треугольнику шурупами

Практически бесплатный ветряной генератор можно сделать из бросовых деталей: двигателя от старого автомобиля и обрезка канализационной трубы

Шаг 1: Разборка бывшего в употреблении генератора

Шаг 2: Восстановление возможностей двигателя

Шаг 3: Сборка восстановленного двигателя для ветряка

Шаг 4: Соединение проводов двигателя и вывод их к силовой линии

Шаг 5: Специфические особенности устройства поворотного узла

Шаг 6: Изготовления хвоста для реагирования на ветер

Шаг 7: Крепление лопастей ветряной мини электростанции

Шаг 8: Сборка практически бесплатного генератора электроэнергии

Присоединяйтесь к обсуждению

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.

О нас

Проект ComputerCraft.ru основан в 2014 году. Особенностью наших игровых серверов является обязательное наличие компьютерных и технических модов и аддонов. Когда мод ComputerCraft устарел и больше не отвечал техническим требованиям, ему на замену пришел современный и высокотехнологичный мод OpenComputers. Черепашек заменили роботы из мода Opencomputers.

ComputerCraft.ru — это площадка для игры в Minecraft и общения на форуме, стабильные серверы и возможность в легкой и игровой форме обучиться программированию на языке Lua и реализовать все свои самые смелые инженерные идеи и решения и поделиться ими с другими игроками. За все время существования проекта сменилось 10 игровых серверов, которые посетили более 9000 игроков. На сайте собрано множество интересных программ и библиотек, статей, гайдов, веселых историй и горячих обсуждений, выдвинуто множество идей автоматизации и способов программирования.

У нас играют и пишут программы как новички так и опытные программисты. А самые продвинутые участники нашего коллектива даже разрабатывают собственные авторские моды и аддоны, ресурспаки, репозитории, мощнейшие библиотеки и операционные системы.

Регистрируйтесь прямо сейчас и присоединяйтесь к нашему дружному коллективу фанатов игры Minecraft , компьютерных и инженерных модов!

Источник

Как ингредиент при крафте[]

Ингредиенты Рецепты крафта Результат
Красная пыль +Электросхема +Светопыль илиЛазурит Улучшенная электросхема
Энергетический кристалл +Трансформатор СН +Золотой провод с двойной изоляцией +Электросхема Трансформатор ВН
Красная пыль +Высоковольтный провод с тройной изоляцией +Электросхема Провод-детектор
Красная пыль +Железная печь +Электросхема Электрическая печь
Булыжник +Основной корпус машины +Кремень +Электросхема Дробитель
Камень +Основной корпус машины +Электросхема Сжиматель
Краник +Электросхема +Основной корпус машины Экстрактор
Оловянная оболочка +Основной корпус машины +Электросхема Наполнитель
Электросхема +Основной корпус машины +Сундук +Буровая труба Буровая установка
Универсальная жидкостная капсула +Основной корпус машины +Электросхема +Буровая труба +Краник Помпа
Улучшенная электросхема +Электросхема +Красная пыль Террачип
Электросхема +Аккумулятор +Светопыль +Золотая оболочка +Изолированный медный провод Сканер КР
Электромотор +Электросхема +Медный провод +Железная оболочка +Аккумулятор Малый электропривод
Электромотор +Электросхема +Медный провод +Железная оболочка +Аккумулятор Электропривод
Аккумулятор +Любые доски +Электросхема Аккумуляторный ранец
Универсальная жидкостная капсула +Железная оболочка +Электросхема +Распылитель строительной пены Ранец с пеной
Железная оболочка +Универсальная жидкостная капсула +Электросхема +Красная пыль Реактивный ранец
Красная пыль +Стекло +Изолированный медный провод +Электросхема Агроанализатор
Универсальная жидкостная капсула +Основной корпус машины +Сундук +Электросхема +Жёрдочки Автосадовник
Золотой провод с двойной изоляцией +Трансформатор СН +Стекло +Электросхема Улучшение «Трансформатор»
Изолированный медный провод +Электросхема +Охлаждающий стержень 10к илиОхлаждающий стержень 30к илиОхлаждающий стержень 60к Улучшение «Ускоритель»
Изолированный медный провод +Аккумулятор +Дубовые доски +Электросхема Улучшение «Энергохранитель»
Стекло +Угольная пыль +Электросхема +Генератор Солнечная панель
Изолированный медный провод +Электросхема +Универсальная жидкостная капсула +Основной корпус машины Электролизёр
Основной корпус машины +Электросхема +Сундук Личный сейф
Красная пыль +Трансформатор СН +Железная оболочка +Электросхема Катушка Теслы
Светопыль +Электросхема +Изолированный медный провод +ТНТ Радиопульт подрыва
Электросхема +Изолированный медный провод Частотный связыватель
Изолированный медный провод +Электросхема +Светопыль Ваттметр
Электросхема +Основной корпус машины +Электромотор Режущая машина

Устаревшие рецепты

Ингредиенты Процесс Результат
Энергетический кристалл +Трансформатор СН +Высоковольтный провод с тройной изоляцией +Электросхема Трансформатор ВН
Лазурит +Энергетический кристалл +Электросхема Лазуротроновый кристалл
Оловянный слиток +Основной корпус машины +Электросхема Наполнитель
Буровая труба +Основной корпус машины +Электросхема Буровая установка
Капсула +Основной корпус машины +Электросхема +Буровая труба +Краник Помпа
Электросхема +Аккумулятор +Светопыль +Изолированный медный провод Сканер КР
Электросхема +Слиток очищенного железа +Аккумулятор Электромотыга
Слиток очищенного железа +Электросхема +Аккумулятор Цепная пила
Электросхема +Краник +Аккумулятор Электрокраник
Электросхема +Гаечный ключ +Аккумулятор Электроключ
Слиток очищенного железа +Электросхема +Аккумулятор Шахтёрский бур
Аккумулятор +Оловянный слиток +Электросхема Аккумуляторный ранец
Канистра +Оловянный слиток +Электросхема +Пустой распылитель строительной пены Ранец с пеной
Слиток очищенного железа +Канистра +Электросхема +Красная пыль Реактивный ранец
Жёрдочки +Основной корпус машины +Сундук +Электросхема Автосадовник
Электросхема +Загрузочная воронка +Поршень +Изолированный медный провод Улучшение «Выталкиватель»
Изолированный медный провод +Электросхема +Капсула +Основной корпус машины Электролизёр
Красная пыль +Трансформатор СН +Слиток очищенного железа +Электросхема Катушка Теслы
Электросхема +Изолированный медный провод Частотный связыватель

Рецепт до версии 1.96:

Ингредиенты Процесс
Энергетический кристалл +Трансформатор СН +Изолированный медный провод +Электросхема

Значения данных [ ]

Геотермальный генератор имеет текстовый идентификатор ic2:te и состояние блока type , равное geo_generator . Конкретные характеристики (а именно содержимое) определяет блок-сущность ic2:geo_generator.

  • NBT-данные блока-сущности
    • id : ic2:geo_generator
    • components : Особые компоненты геотермального генератора.
      • energy : Содержимое внутреннего энергохранителя.
      • fluid : Содержимое резервуара с жидкостью.
        • fluid : Жидкость (если имеется).
          • Amount : Количество жидкости.
          • FluidName : Название жидкости (всегда lava ).
    • InvSlots : Ячейки интерфейса геотермального генератора.
      • charge : Ячейка для заряжаемого энергохранителя.
      • fluidSlot : Ячейка для вёдер или капсул с лавой.
      • output : Ячейка для пустых вёдер или капсул.
    • active : Состояние генератора: выделяет энергию или нет.
    • facing : Направление генератора.
    • fuel : Назначение неясно.

Материалы[]

Изображение Название Описание
Фотон Используется для крафта фотонного слитка. Можно получить из 9 иридиевых слитков в компрессоре.
Фотонный слиток Используется для крафта дифракционного сплава обогащённой солнечной материи и улучшенного МФСУ. Можно получить из 9 единиц фотония в компрессоре.
Улучшенный энергетический кристалл Используется для крафта улучшенной квантовой брони.
Спектральная электросхема Используется для крафта улучшенной квантовой брони и генератора нейтронных частиц.
Нейтронный осколок Используется для крафта нейтронного слитка. Можно получить из капсулы жидкого нейтрона в компрессоре.
Нейтронный слиток Используется для крафта нейтронного квантового ядра.
Сжатая иридиевая пластина Используется для крафта спектральной солнечной панели. Можно получить из 9 продвинутых компрессированных иридиевых пластин в компрессоре.
Улучшенная сжатая иридиевая пластина Используется для крафта. Можно получить из иридиевого композита в компрессоре.
Улучшенный квантовый ящик для инструментов Используется для крафта.
Улучшенный нано-ящик для инструментов Используется для крафта.
Нано-ящик для инструментов Используется для крафта.
Квантовый ящик для инструментов Используется для крафта.

Ядра

Изображение Название Описание
Улучшенное ядро Используется для создания улучшенной солнечной панели, для соответствующего набора улучшений панели и для гибридного и манастального ядер.
Гибридное ядро Используется для создания гибридной солнечной панели, для соответствующего набора улучшений панели, для модуля «Эффективность I» и для совершенного ядра.
Совершенное ядро Используется для создания совершенной гибридной солнечной панели, для соответствующего набора улучшений панели, для модуля «Эффективность II» и для квантового ядра.
Квантовое ядро Используется для создания квантовой солнечной панели, для соответствующего набора улучшений панели, для модуля «Область 3х3» и для спектрального ядра.
Спектральное ядро Используется для создания спектральной солнечной панели, для соответствующего набора улучшений панели, для модулей «Удача I» и «Удача II», для протонного ядра и для некоторых машин.
Протонное ядро Используется для создания протонной солнечной панели, для соответствующего набора улучшений панели, для модулей повышения и понижения уровня панелей, для всех типов генераторов твёрдой материи, для сингулярного и нейтрониевого ядер и для некоторых машин.
Сингулярное ядро Используется для создания сингулярной солнечной панели, для соответствующего набора улучшений панели, для модуля «Эффективность III», для преобразователя твёрдой материи и для дифракционного ядра.
Дифракционное ядро Используется для создания дифракционной солнечной панели, для соответствующего набора улучшений панели, для фотонного ядра и для некоторых машин.
Фотонное ядро Используется для создания фотонной солнечной панели, для соответствующего набора улучшений панели, для модуля «Эффективность IV», для нейтронного ядра и для некоторых машин.
Нейтронное ядро Используется для создания нейтронной солнечной панели, для соответствующего набора улучшений панели, для барионного ядра и для некоторых машин.
Барионное ядро Используется для создания барионной солнечной панели, для соответствующего набора улучшений панели и для адронного ядра.
Адронное ядро Используется для создания адронной солнечной панели, для соответствующего набора улучшений панели, для модуля «Эффективность V» и для гравитонного ядра.
Гравитонное ядро Используется для создания гравитонной солнечной панели, для соответствующего набора улучшений панели и для кваркового ядра.
Кварковое ядро Используется для создания кварковой солнечной панели и для соответствующего набора улучшений панели.
Нейтрониевое ядро Используется для создания нейтрониевой солнечной панели, для соответствующего набора улучшений панели и для ядра бесконечности.
Ядро бесконечности Используется для создания солнечной панели бесконечности и для соответствующего набора улучшений панели.
Манастальное ядро Используется для создания манастальной солнечной панели, для соответствующего набора улучшений панели и для элементиевого ядра.
Элементиевое ядро Используется для создания элементиевой солнечной панели, для соответствующего набора улучшений панели и для террастального ядра.
Террастальное ядро Используется для создания террастальной солнечной панели и для соответствующего набора улучшений панели.

Вопрос

Vampirenostra

  • 1
  • 35 публикаций
  • Статус в игре:player
  • Онлайн за всё время: 80
  • Онлайн за месяц:

Стоит 3 ветрогенератора с кинетическими.

Все это соединено изолированными высоковольтными проводами с ядерником на 60EU/t

По информации кинетических генераторов они вырабатывают

замер вольтметром показал:

Замеры ядерника показывают то же что и интерфейс — 60EU/t.

Замер на генераторах и муммарный замер на проводах и МФЭ дают одинаковые результаты.

А теперь вопрос: Где косяк? Почему такая разница между показаниями интерфейса и вольтметра. Тем более что МФЭ работает как от напряжения в 360EU/t. Хотя при суммировании напряжения с интерфейсов должно было бы быть 1120+EU/t.

Присоединяйтесь к обсуждению

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.

О нас

Проект ComputerCraft.ru основан в 2014 году. Особенностью наших игровых серверов является обязательное наличие компьютерных и технических модов и аддонов. Когда мод ComputerCraft устарел и больше не отвечал техническим требованиям, ему на замену пришел современный и высокотехнологичный мод OpenComputers. Черепашек заменили роботы из мода Opencomputers.

ComputerCraft.ru — это площадка для игры в Minecraft и общения на форуме, стабильные серверы и возможность в легкой и игровой форме обучиться программированию на языке Lua и реализовать все свои самые смелые инженерные идеи и решения и поделиться ими с другими игроками. За все время существования проекта сменилось 10 игровых серверов, которые посетили более 9000 игроков. На сайте собрано множество интересных программ и библиотек, статей, гайдов, веселых историй и горячих обсуждений, выдвинуто множество идей автоматизации и способов программирования.

У нас играют и пишут программы как новички так и опытные программисты. А самые продвинутые участники нашего коллектива даже разрабатывают собственные авторские моды и аддоны, ресурспаки, репозитории, мощнейшие библиотеки и операционные системы.

Регистрируйтесь прямо сейчас и присоединяйтесь к нашему дружному коллективу фанатов игры Minecraft , компьютерных и инженерных модов!

Источник

Получение

Геотермальный генератор должен быть демонтирован гаечным ключом или электроключом. Блок также можно добыть с помощью кирки, но при этом выпадет только обычный генератор. При попытке демонтажа любым другим инструментом или рукой блок не выпадает.

Крафт

Ингредиенты Процесс
Стекло +Универсальная жидкостная капсула +Железная оболочка +Генератор

Старый рецепт

Ингредиенты Процесс
Стекло +Капсула +Железная оболочка +Генератор

Возобновление с помощью репликации исходных материалов

Картинка Название предмета Требуемое количество жидкой материи
Красная пыль 1.221 мВ
Оловянный слиток 1.082 мВ
Резина 100.7 мВ
Железный слиток 1.066 мВ
Булыжник 10 мкВ
Стекло 290 мкВ
Стеклянная панель 109.4 мкВ

Общие советы[]

  • Для посадки и роста большинства растений требуется хорошая освещённость (но не для всех).
  • Удобрение, увлажняющая капсула ускорят процесс созревания, а капсула с пестицидами защищает растения и пустые жёрдочки от сорняков. Автоматизировать процесс поможет автосадовник.
  • Так как жёрдочки могут стоять только на грядках, то нельзя допускать затаптывания грядки, то есть она должна быть постоянно увлажнена, и по ней нельзя прыгать (и игрокам, и мобам).
  • При движении по жёрдочкам с посаженным растением есть шанс уничтожить культуру, при этом не выпадет ничего. Если у культуры высокая сопротивляемость, то она более устойчива к этому. Поэтому можно попробовать установить грядки выше пола, чтобы случайно их не затоптать. В экспериментальной версии грядки затаптываются только при беге, но, тем не менее, чтобы случайно не перейти на бег (нажав два раза «вперёд» или Ctrl) рекомендуется передвигаться по грядкам присев (с зажатым Shift’ом).
  • Для идентификации семян используется агроанализатор.
  • Скрещенные агрокультуры получаются только на двойных жёрдочках.
  • Простой сбор урожая (ПКМ по культуре) не уничтожает само растение. Некоторые растения после сбора остаются на предпоследней стадии роста (такие как цветы), а некоторые переходят на первую (сахарный тростник, пшеница).
  • Для получения мешочка с семенами следует уничтожить культуру (ЛКМ по растению). Для базовых культур с нулевыми параметрами вместо мешочка могут выпадать их обычные семена.
  • Урожаи с одинаковых растений, но различных сортов, не стакаются между собой.
  • Культуры могут скрещиваться, только когда вырастут до 3-ей стадии роста или выше. Так что сразу ставить двойные жёрдочки возле саженцев не только бесполезно, но и опасно (на них может появиться сорняк, который может уничтожить и родительские растения). Лучше немного подождать.

Рецепты[]

Примечания:

  • 1 000 000 мкВ = 1 000 мВ = 1 Ведро
  • В новых версиях в шаблонах больше не нужна дополнительная энергия. Но на обработку 1 мВ материи требуется 1 000 000 еЭ.
  • Предметы получаемые путём крафта тоже можно производить из материи. Количество материи будет равно сумме требуемой материи для их ресурсов.

Природные блоки и материалы из них

Зелёный — 0-999 мкВ, оранжевый — 1-999 мВ, красный — >1 В

Картинка Название предмета Требуемое количество жидкой материи
Камень 150 мкВ
Дёрн 26.35 мВ
Земля 148.6 мкВ
Булыжник 10 мкВ
Коренная порода 162.3 мкВ
Песок 150 мкВ
Красный песок 266 мВ
Гравий 527.6 мкВ
Стекло 290 мкВ
Стеклянная панель 109.4 мкВ
Песчаник 610 мкВ
Декоративный песчаник 623.3 мкВ
Резной песчаник 612.5 мкВ
Кирпичный блок 92.9 мВ
Замшелый булыжник 259.6 мВ
Лёд 30.04 мВ
Снег 11.6 мВ
Глиняный блок 92.34 мВ
Адский камень 40.29 мВ
Песок душ 80.57 мВ
Светящийся камень 159.8 мВ
Каменный кирпич 152.5 мкВ
Адский кирпич 161.7 мВ
Терракота 8.645 мВ
Кремень 667.6 мкВ
Снежок 7.472 мВ
Кирпич 23.22 мВ
Глина 23.08 мВ
Светопыль 39.94 мВ
Адский кирпич (предмет) 40.43 мВ

Руда, слитки, блоки

Картинка Название предмета Требуемое количество жидкой материи
Золотая руда 16.49 мВ
Железная руда 1.711 мВ
Лазуритовый блок 59.7 мВ
Золотой блок 76.11 мВ
Железный блок 9.601 мВ
Алмазный блок 399.7 мВ
Изумрудный блок 3.616 В
Блок красного камня 11 мВ
Медная руда 1.415 мВ
Оловянная руда 1.744 мВ
Урановая руда 22.26 мВ
Свинцовая руда 10.73 мВ
Угольный блок 8.24 мВ
Медный блок 8.266 мВ
Оловянный блок 9.749 мВ
Бронзовый блок 8.659 мВ
Урановый блок 20.67 мВ
Свинцовый блок 50.2 мВ
Стальной блок 9.601 мВ
Уголь 914.4 мкВ
Древесный уголь 30.12 мВ
Алмаз 44.41 мВ
Железный слиток 1.066 мВ
Золотой слиток 8.456 мВ
Красная пыль 1.221 мВ
Лазурит 6.633 мВ
Изумруд 401.7 мВ
Медный слиток 917.4 мкВ
Оловянный слиток 1.082 мВ
Бронзовый слиток 961.1 мкВ
Стальной слиток 1.066 мВ
Свинцовый слиток 5.576 мВ
Серебряный слиток 79.25 мВ
Плутоний 291.3 мВ
Кусочек урана-235 5.74 мВ
Уран-238 2.296 мВ
Иридий 360 мВ

Древесина

Картинка Название предмета Требуемое количество жидкой материи
Дубовые доски 5.019 мВ
Еловые доски 5.7 мВ
Берёзовые доски 9.37 мВ
Джунглевые доски 13.47 мВ
Акациевые доски 107.7 мВ
Доски из тёмного дуба 5.019 мВ
Дубовая древесина 36.92 мВ
Еловая древесина 34.06 мВ
Берёзовая древесина 63.43 мВ
Джунглевая древесина 80.65 мВ
Акациевая древесина 646 мВ
Древесина тёмного дуба 29.98 мВ
Древесина гевеи 1.018 В
Палка 1.696 мВ

Растения и саженцы

Картинка Название предмета Требуемое количество жидкой материи
Дубовый саженец 60.13 мВ
Еловый саженец 119.8 мВ
Берёзовый саженец 147.8 мВ
Джунглевый саженец 960.6 мВ
Акациевый саженец 1.473 В
Саженец тёмного дуба 235.6 мВ
Саженец гевеи 3.881 В
Одуванчик 370.8 мВ
Мак 639.3 мВ
Синяя орхидея 12.9 В
Лук (цветок) 5.248 В
Хаустония серая 2.042 В
Красный тюльпан 4.203 В
Оранжевый тюльпан 4.381 В
Белый тюльпан 5.317 В
Розовый тюльпан 7.69 В
Нивяник 3.228 В
Коричневый гриб 973.8 мВ
Красный гриб 1.946 В
Кактус 4.19 В
Тыква 88.32 В
Арбуз 81.49 В
Кувшинка 1.704 В
Подсолнечник 4.968 В
Сирень 4.737 В
Розовый куст 5.007 В
Пион 5.169 В
Семена 61.45 мВ
Пшеница 17.49 В
Сахарный тростник 3.074 В
Ломтик арбуза 9.054 В
Семена тыквы 22.08 мВ
Семена арбуза 9.054 В
Морковь 30.82 В
Картофель 28.16 В

Красители

Картинка Название предмета Требуемое количество жидкой материи
Чернильный мешок
Красный краситель 639.3 мВ
Кактусовая зелень 4.19 В
Какао-бобы 4.881 В
Лазурит 6.633 мВ
Фиолетовый краситель 323 мВ
Бирюзовый краситель 2.098 В
Светло-серый краситель 2.042 В
Серый краситель
Розовый краситель 329.7 мВ
Лаймовый краситель 2.105 В
Жёлтый краситель 370.8 мВ
Светло-синий краситель 13.41 мВ
Сиреневый краситель 325.2 мВ
Оранжевый краситель 505 мВ
Костная мука 20.18 мВ

Еда

Картинка Название предмета Требуемое количество жидкой материи
Яблоко 52.69 мВ
Тушёные грибы 2.923 В
Хлеб 52.69 мВ
Жареная свинина 88.32 мВ
Золотое яблоко 120.3 мВ
Зачарованное золотое яблоко 661.6 мВ
Торт 159.6 мВ
Печенье 4.982 В
Ломтик арбуза 9.054 В
Жареная говядина 88.32 мВ
Жареная курятина 88.32 мВ
Гнилая плоть 40.29 мВ
Морковь 30.82 В
Печёный картофель 28.16 В
Ядовитый картофель 8167 В
Золотая морковь 30.83 В
Тыквенный пирог 3.263 В
Заполненная консервная банка 10.69 мВ

Другие материалы

Картинка Название предмета Требуемое количество жидкой материи
Белая шерсть 587.2 мВ
Нить 146.8 мВ
Порох 2.361 мВ
Кожа 80.57 мВ
Слизь 133.2 мВ
Яйцо 100.7 мВ
Кость 80.57 мВ
Жемчуг Края 1.001 В
Огненный стержень 2.003 В
Огненный порошок 400.7 мВ
Лавовый крем 533.9 мВ
Латекс 6.331 В
Резина 100.7 мВ

Интерфейс

  1. Регулируемый счетчик количества воды, получаемой извне или выдаваемой парогенератором (мВ / такт)
  2. Регулируемый счетчик давления. Чем больше давление, тем медленнее уменьшается температура и извлекается жидкость из парогенератора
  3. Внутренний резервуар парогенератора. Отображается заполненность и тип жидкости
  4. Текущая температура парогенератора (С)
  5. Количество накипи в парогенераторе. От количества накипи зависит эффективность работы устройства. Когда накипь достигнет максимума, прибор сломается.
  6. Количество воды, выдаваемой парогенератором в настоящий момент (мВ / такт)
  7. Тип выдаваемой жидкости
  8. Количество тепла, принимаемого извне (еТЭ)

Мощность и пакеты[]

Мощность, производная энергии по времени, характеризует количество энергии, производимой, передаваемой или потребляемой за определённое время.

Измеряется в еЭ/т, единицах Энергии за такт (англ. EU/t, Energy Unit per tick), где такт — внутриигровая единица времени, равная 1/20 секунды (50 мс). Аналог еЭ/т в реальной жизни — Ватт (Вт). В игре энергия вырабатывается и передаётся пакетами, имеющими определённый размер в еЭ. Каждый такт происходит следующее:
  • Генераторы и энергохранилища посылают пакеты, равные их выходной мощности;
  • Провода проверяют пакеты на предмет возможности их провести, и взрываются, если хотя бы один из пакетов превышает допустимый размер;
  • Понижающие трансформаторы получают пакет, делят его на пакеты меньшего размера и отправляют все меньшие пакеты сразу;
  • Повышающие трансформаторы получают пакет и, если накоплено достаточно еЭ, передают дальше большой пакет, иначе продолжают копить;
  • Устройства и энергохранилища получают пакеты и отправляют их на совершение работы или во внутреннее хранилище, если размер пакета входит в рабочий диапазон, если пакет больше — взрываются.

Количество пакетов и их суммарный размер никак не ограничиваются. Таким образом, общее количество передаваемой и принимаемой энергии может быть много больше максимально допустимого размера пакета. Так, например, три энергохранителя, питающие через один медный провод дробитель, передают в сумме 96 еЭ/т, но ни провод, ни дробитель не взорвутся, поскольку энергия будет передана тремя пакетами по 32 еЭ каждый, по одному с каждого энергохранителя.

Зачастую, размер пакетов, особенно максимально допустимый, называют напряжением, однако с физической точки зрения это название некорректно.

История [ ]

Старый интерфейс геотермального генератора

До введения УЖК использовались более ранние виды капсул.

До экспериментальной версии интерфейс генератора был другим. Внутренний резервуар имел объём в 24 ведра (капсулы), а объём внутреннего энергохранителя — 10 000 еЭ. Слот для принятия капсул располагался под индикатором запасов лавы, над которым располагался слот для заряжаемых энергохранителей. Индикатор запасённой электроэнергии располагался сбоку. Отдельной ячейки для пустых вёдер (тогда как капсулы в то время были одноразовыми и расходовались вместе с лавой) не было.

Также, до экспериментальной версии, которая ввела железные оболочки, для крафта вместо них использовались слитки очищенного железа (ныне стальные слитки):

Источник

Кинетический ветрогенератор

mkaasin

Кинетический ветрогенератор вырабатывает кинетическую энергию зависимое от скорости ветра, а кинетический генератор «переделывает» кинетическую энергию в простую в пропорции 8:1 (я, иногда, устанавливаю вместо кинетического генератора токарный стол)

Скорость ветра зависит от высоты, погоды и случайного фактора, меняющегося во времени. Дождь увеличивает скорость на 20%, гроза на 50%.*

1. Чтобы установить Кинетический ветрогенератор вам нужен: сам ветрогенератор и кинетический генератор а крафтятся они так: 1) Кинетический генератор

(Генератор, 6 железных оболочек, электромотор и железный стержень)

(Основной корпус механизма, 4 железных стержня, 4 железные пластины=48 железа)

3. Проводим провода от (МФЭХ) до 160 блока (так-как это самая оптимальная высота. На ВСЕХ остальных блоках хоть выше, хоть ниже скорость ветра будет ниже чем на 160 блоках)

4. Ставим Кинетический генератор

ВАЖНО Нужно чтобы был в кинетическом генераторе на текстурках (типо диска) Главное чтобы не вот так

Это получается при зажатом шифте когда вы нажимаете правой кнопкой мыши по кинетическому генератору Убрать это можно при не зажатом шифте правой кнопкой мыши

5.Ставим кинетический ветрогенератор Зажимаем шифт и тыкаем правой кнопкой мыши

и тоже важно как и с кинетическим генератором с зажатым шифтом с ключом

Углеволоконные роторы можно ставить в 11 блоков в сторону низ\верх\лева\справа.

и вот что у меня получилось

если вы хотите поставить также в 2 слоя то от них должно быть расстояние 35 блоков. У меня всё. Удачи и приятной игры =)

Источник

Подбор материала

Лопасти для ветряного устройства можно выполнить из любого более или менее подходящего материала, например:

Из трубы ПВХ

Соорудить лопасти из этого материала, наверное, проще всего. Трубы ПВХ можно найти в каждом строительном магазине. Выбирать трубы следует те, которые разработаны для канализации с напором либо газопровода. В противном случае поток воздуха при сильном ветре может искорежить лопасти и повредить их о мачту генератора.

Лопасти ветрогенератора претерпевают серьезные нагрузки от центробежной силы, причем, чем длиннее лопасти, тем сильнее нагрузки.

Край лопасти двухлопастного колеса домашнего ветрогенератора вращается со скоростью сотни метров в секунду, такова скорость вылетающей из пистолета пули. Такая скорость может привести к разрыву труб ПВХ. Особенно опасно это тем, что разлетающиеся осколки труб могут убить либо серьезно ранить людей.

Выйти из положения можно укоротив по максимуму лопасти и увеличив их число. Многолопастное ветряное колесо легче балансировать, оно меньше шумит

Немаловажное значение имеет толщина стенок труб. К примеру, для ветряного колеса с шестью лопастями из ПВХ трубы, составляющего в диаметре два метра, их толщина не должна быть менее 4 миллиметров

Для расчета конструкции лопастей домашнему умельцу можно воспользоваться готовыми таблицами и шаблонами

Для расчета конструкции лопастей домашнему умельцу можно воспользоваться готовыми таблицами и шаблонами.

Шаблон следует смастерить из бумаги, приложить к трубе и обвести. Это следует сделать столько раз, сколько лопастей будет у ветрогенератора. При помощи лобзика трубу необходимо рассечь по меткам – лопасти практически готовы. Края труб шлифуются, углы и концы закругляются для того, чтобы ветряк выглядел симпатично и поменьше шумел.

Из стали следует смастерить диск с шестью полосами, который будет играть роль конструкции, объединяющей лопасти и фиксирующей колесо к турбине.

Габариты и форма соединительной конструкции должны соответствовать типу генератора и постоянного тока, который будет задействован в ветряной электростанции. Сталь необходимо выбрать такой толщины, чтобы она не деформировалась под ударами ветра.

Из алюминия

По сравнению с лопастями из ПВХ труб алюминиевые более выносливы и на изгиб, и на разрыв. Недостаток их заключается в большом весе, что требует принятия мер к обеспечению устойчивости всего сооружения в целом. Кроме того, следует максимально тщательно балансировать колесо.

Рассмотрим особенности исполнения лопастей из алюминия для шестилопастного ветряного колеса.

По шаблону следует выполнить лекало из фанеры. Уже по лекалу из листа алюминия высечь заготовки лопастей в количестве шести штук. Будущая лопасть прокатывается в желоб глубиной в 10 миллиметров, при этом ось прокрутки должна образовать с долевой осью заготовки угол в 10 градусов. Эти манипуляции наделят лопасти приемлемыми аэродинамическими параметрами. К внутренней стороне лопасти крепится втулка с резьбой.

Соединительный механизм ветряного колеса с лопастями из алюминия в отличие от колеса с лопастями из труб ПВХ имеет на диске не полоски, а шпильки, представляющие собой куски стального прута с резьбой, подходящей к резьбе втулок.

Из стекловолокна

Лопасти из собранной из стекловолокна специфической стеклоткани являются наиболее безупречными, учитывая их аэродинамические параметры, прочность, вес. Соорудить эти лопасти трудней всего, поскольку нужно уметь обрабатывать дерево и стеклоткань.

Мы рассмотрим выполнение лопастей из стекловолокна для колеса диаметром два метра.

Наиболее скрупулезно следует подойти к выполнению матрицы из дерева. Она вытачивается из брусьев по готовому шаблону и служит моделью лопасти. Закончив трудиться над матрицей, можно начинать мастерить лопасти, которые будут состоять из двух частей.

Матрицу для начала надо обработать воском, одну из ее сторон покрыть эпоксидной смолой, на ней расстелить стеклоткань. На нее снова нанести эпоксидную смолу, и снова слой стеклоткани. Количество слоев может быть три или четыре.

Затем нужно прямо на матрице получившуюся слойку держать около суток до полного высыхания. Вот и готова одна часть лопасти. С другой стороны матрицы выполняется та же последовательность действий.

Готовые части лопастей следует соединить при помощи эпоксидной смолы. Внутрь можно поместить деревянную пробку, зафиксировать ее клеем, это позволит закрепить лопасти к ступице колеса. В пробку следует внедрить втулку с резьбой. Соединительный узел станет ступицей так же как и в предыдущих примерах.

[su_youtube url=»https://www.youtube.com/embed/ZCVZUjoSz_I»]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector